
Announcements

Today you will write programs in the lab

Programming Assignment  Thursday midnight.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

TOWARDS PROGRAMMING WITH
PYTHON

2

3

Hardware versus Software

Applications
(Browser, Games, …)

Operating System
(Windows, Linux, Mac OS X, …)

Hard Drive Monitor hardware

software

…..

Execution of Python Programs

4

Applications

Operating System

Hard Drive Monitor

Python
Interpreter

Python Program When you write a program
in Python, Java etc. It
does not run directly on
the OS.

Another program called an
interpreter or virtual
machine takes it and runs
it for you translating your
commands into the
language of the OS.

…

Execution of Python Programs

5

Applications

Operating System

Hard Drive Monitor

Python
Interpreter

…

Python Program We will write Python
programs that are
executed by the
Python Interpreter.

A Python Interpreter for
your OS already exists. You
can use the one on lab
machines, install one for
your laptop, or use one
remotely

Using a Python Interpreter

There are two ways to interact with a Python interpreter:

1. Tell it to execute a program
that is saved in a file with
a .py extension

2. Interact with it in a
program called a shell

6

A Short Introduction

• Starting the Python interpreter either using remote access to
a Unix Server at CMU or on your own computer

• For specific instructions see the Resources page

http://www.cs.cmu.edu/~15110-n15/resources.html

• Creating .py files with a text editor or

• Using IDLE (Integrated DeveLopment Environment)

7

http://www.cs.cmu.edu/~15110-n15/resources.html
http://www.cs.cmu.edu/~15110-n15/resources.html
http://www.cs.cmu.edu/~15110-n15/resources.html
http://www.cs.cmu.edu/~15110-n15/resources.html
http://www.cs.cmu.edu/~15110-n15/resources.html

Using IDLE

Idle3

Starting a Python Interpreter using Remote Access

• If you wish to work on your programming

assignments from a physically remote location,

we recommend that you use ssh and X11 to run

python3, gedit, etc., on unix.andrew.cmu.edu.

9

Secure shell

protocol

X window

System

Using a Text Editor

• Files with the .py extension can be created by any
editor but needs a Python interpreter to be read.

• We have chosen the integrated development
environment of Python (IDLE) for the course but
you may use an text editor of your own choice if
you feel comfortable.

– We suggest gedit as the editor but you may use an
editor of your own choice if you feel comfortable.

10

Useful Unix Commands (Part 1)

All commands must be typed in lower case.

pwd  shows working directory (where you are)

ls  lists all the files and folders in the directory

cd  stands for 'change directory':

cd lab1  change to the lab1 directory/folder

cd ..  going up one directory/folder

cd ../..  going up two directories

11

Useful Unix Commands (Part 2)

mkdir lab1
make directory lab1 aka makes a folder called lab1

rm -r lab1
removes the directory lab1 (-r stands for recursive, which deletes

any possible folders in lab1 that might contain other files)

cp lab1/file1.txt lab2
copies file1.txt file (inside of the folder lab1), to the folder lab2

mv lab1/file1.txt lab2  moves a file called file1.txt, which is

inside of the folder lab1, to the folder lab2

zip zipfile.zip file1.txt file2.txt file3.txt
zips files 1 to 3 into zipfile.zip

zip -r zipfile.zip lab1/
zips up all files in the lab1 folder into zipfile.zip 12

Useful Unix Commands (Part 3)

^c  ctrl + c, interrupts running program

^d ctrl + d, gets you out of python3

"tab" autocompletes what you're typing based on the
files in the current folder

"up" cycles through the commands you've typed.
Similarly for the opposite effect press "down"

13

Useful Unix Commands (Part 4)

python3 -i test.py  load test.py in python3, and you can call the
functions in test.py.

gedit lb1.txt &  opens up lb1.txt on gedit and & allows you to run
your terminal at the same time (else your terminal pauses until you close
gedit)

ssh -X ANDREW_ID@unix.andrew.cmu.edu  log into the
Andrew servers and the files you've created from labs and the Linux
cluster computers from your personal computer w/out setting anything
up (replacing ANDREW_ID with your own andrewID)

And lastly, you can always do man <command> to find out more about
a particular command you're interested about (eg. man cp, man ls)

14

Use the Resources page

• To install Python 3 to your computers or

• To try out remote access instructions so that you can run
Python on Andrew machines from your own machine

• To see other supporting resources.

• If you don’t have a computer, learn the places and open-
hours of labs that you can use. (Programming assignments
should be submitted until 11:59 PM on its due date)

15

An Introduction to Programming
- I -

15110 Principles of Computing

Carnegie Mellon University
16

Today

• Programing languages and programs

• The Python programming language

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

A programming “language” is a
formal notation

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

Not a natural language

Recipe

• Interpreted by a person

• …for herself (“I want sauce”)

• Unclear? Can be figured out
(What’s a “roux”?
 How much is “some?)

• Typos? Can be figured out
(“mikl” means “milk”)

Computer program

• Interpreted by a machine

• …for a human (“somebody
wants to print something”)

• Unclear? Not a program
(“whatever I want”????)

• Typos? Program errors
(“pritn”???)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

White Wine and Cheddar Sauce

…make a roux, heat the mikl, add

some of the warm milk…

for i in range(5):

 print(whatever I want)

A programming “language” is a
formal notation

for generalized problem solving

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

Programs should be general

Recipe Program
• def force(mass, accel) :

 return mass*accel

General: output is force for
any combination of mass
and acceleration.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
21

•

Specific: “output” is two
cups of sauce.

Python

• Python is one of many programming languages.

• 2 widely used versions. We will use Python 3.
(Specifically, Python version 3.3.2)

Running on the command line

> python3

or

> python3 –i filename.py

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
22

Using IDLE

Command Line Interfaces

• Be aware of the difference between “talking
to the shell” and “talking to Python”

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
23

$ ssh annpenny@linux.andrew.cmu.edu

annpenny@linux.andrew.cmu.edu's password:

…

[annpenny@unix2 ~]$ pwd

/afs/andrew.cmu.edu/usr14/annpenny

[annpenny@unix2 ~]$ python3

Python 3.3.2 (default, Aug 12 2013, 13:12:23)

[GCC 4.6.3] on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>> quit()

shell
prompt

user input

shell
response ask shell to

run Python

Python
prompt

input to
Python

Expressions and Statements

• Know the difference!

Python evaluates an expression to get a result
(number or other value)

Python executes a statement to perform an action
that has an effect (printing something, for example)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
24

Arithmetic Expressions

• Mathematical Operators
+ Addition
- Subtraction // Integer division
* Multiplication ** Exponentiation
 / Division % Modulo (remainder)

• Python is like a calculator: type an expression and it
tells you the value.

15110 Principles of Computing,

Carnegie Mellon University
25

>> 2 + 3 * 5

 17

Order of Evaluation

Order of operator precedence:

** * / % + -

Use parentheses to force alternate precedence
 5*6+7 ≠ 5*(6+7)

Left associativity except for **
2 + 3 + 4 =(2+3)+4
2 ** 3 ** 4 = 2**(3**4)

15110 Principles of Computing,

Carnegie Mellon University
26

Data Types

• Integers
4 15110 -53 0

• Floating Point Numbers

 4.0 -0.8 0.3333333333333333

7.34e+014

• Strings
"hello" "A" " " "" "7up!"

'there' '"' '15110'

• Booleans
True False

27

George Boole,
1815-1864

Integer Division

In Python3:

 7 / 2 equals 3.5

 7 // 2 equals 3

 7 // 2.0 equals 3.0

7.0 // 2 equals 3.0

-7 // 2 equals -4

15110 Principles of Computing,

Carnegie Mellon University
28

// opertor rounds down to smaller number, not towards zero

Variables

• A variable is not an “unknown” as in algebra.

• In computer programming, a variable is a
place where you can store a value.

• In Python we store a value using an
assignment statement:

15110 Principles of Computing,

Carnegie Mellon University
29

>> a = 5

>> a

=> 5

5 a:
Assignment
statement

Expression

Computer
memory

Python’s
response

Variables

15110 Principles of Computing,

Carnegie Mellon University
30

>> a

 5

>> b = 2 * a

>> b

 10

5 a:

10 b:

Assignment
statement

Expression
Computer
memory

Expression

Variables

Variable b does not
“remember” that its
value came from
variable a.

31

“Woof” a:

10 b:

>> a

 5

>> b

 10

>> a = “Woof”
>> a

 “Woof”
>> b

 10

Variable Names

• All variable names must start with a letter
(lowercase recommended).

• The remainder of the variable name can
consist of any combination of uppercase or
lowercase letters, digits and underscores (_).

• Identifiers in Python are case sensitive.
Example: Value is not the same as value.

15110 Principles of Computing,

Carnegie Mellon University
32

Built-In Functions (Methods)

• Lots of math stuff, e.g., sqrt, log, sin, cos

import math

r = 5 + math.sqrt(2)

alpha = math.sin(math.pi/3)

15110 Principles of Computing,

Carnegie Mellon University
33

Using predefined modules

• math is a predefined module of functions (also
called methods) that we can use without writing
their implementations.

 math.sqrt(16)

 math.pi

 math.sin(math.pi / 2)

15110 Principles of Computing,

Carnegie Mellon University
34

Write Your Own Methods

def tip (total):

 return total * 0.18

>> tip(100)

 18.0

>> tip(135.72)

 24.4296

15110 Principles of Computing,

Carnegie Mellon University
35

Method Syntax

 def methodname(parameterlist):
☐☐☐☐instructions

• def is a reserved word and cannot be used as
a variable name.

• Indentation is critical.
Use spaces only, not tabs !!!!!!!!!!!!!!!!!!!!!!!!!

15110 Principles of Computing,

Carnegie Mellon University
36

Methods are general

• The parameter list can contain 1 or more
variables that represent data to be used in the
method’s computation.

• A method can also have no parameters!

 def hello_world():

 print("Hello World!\n”)

 (\n is a newline character)

 15110 Principles of Computing,

Carnegie Mellon University
37

parentheses must
be present!

Example: area of a countertop

15110 Principles of Computing,

Carnegie Mellon University
38

?
4 / 2 = 2

4 / 2 = 2

4

countertop.py

def compute_area():

 square = 4 * 4

 triangle = 0.5 * (4/2) * (4/2)

 area = square - triangle

 return area

Calling the function/method :
 > python3 –i countertop.py (OR run from IDLE)

 >>> compute_area()

 14.0

15110 Principles of Computing,

Carnegie Mellon University
39

empty parameter list

empty argument list

Generalizing the problem

15110 Principles of Computing,

Carnegie Mellon University
40

?
X / 2

X / 2

X

countertop.py

def compute_area(side):

 square = side * side

 triangle = 0.5 * (side/2 * side/2)

 area = square - triangle

 return area

To run (use) the function/method:
 python3 –i countertop.py (OR run from IDLE)

 >>> compute_area(109)

15110 Principles of Computing,

Carnegie Mellon University
41

parameter

argument
(run function with side = 109)

Method inputs are for generality

• def compute_area(side):

 …

side names the input parameter to the method

• >>> compute_area(109)

109 is the argument value to substitute for
the parameter side

• But we can use any positive number and get
an answer that makes sense!

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
42

parameter

 argument
(run function with side = 109)

Method Outputs

Method outputs a value by return

 def tip (total):

 return total * 0.18

… or it may return None

 def hello_world():

 print("Hello World!\n”)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
43

>>> hello_world()

Hello World!

>>> print(hello_world())

Hello World!

None

Method Outputs

>>> tip(12)

2.16

>>> print(tip(12))

2.16

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
44

value returned

value returned
and printed

value printed
by method

value returned
and printed

Method Outputs

• To use a method, we “call” the method.

• A method can return either one answer or no
answer (None) to its “caller”.

• The hello_world function does not return
anything to its caller. It simply prints something on
the screen.

• The tip function does return its result to its caller
so it can use the value in another computation:
tip(12) + tip(16)

15110 Principles of Computing,

Carnegie Mellon University
45

Method Outputs

Suppose we write compute_area this way:
 def compute_area(side):

 square = side * side

 triangle = 0.5 * side/2 * side/2

 area = square - triangle

 print(area)

Now the following computation does not work
since each function call prints but returns None:

 compute_area(109) + compute_area(78)

15110 Principles of Computing,

Carnegie Mellon University
46

Which methods would you write

for a program which draws

 *

 ||||

 ||||

 ========
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
47

escape.py
(a function with two parameters)

import math

def compute_ev(mass, radius):

 # computes escape velocity

 univ_grav = 6.67e-011

 return math.sqrt(2*univ_grav*mass/radius)

To run the function for Earth in python3:
python3 –i escape.py

>>> compute_ev(5.9742e+024, 6378.1)

15110 Principles of Computing,

Carnegie Mellon University
48

Comments
begin with #

What Could Possibly Go Wrong?

alpha = 5

2 + alhpa

3 / 0

import math

 math.sqrt(-1)

math.sqrt(2, 3)

 15110 Principles of Computing,

Carnegie Mellon University
49

Next Lecture

Loops – how to run a million computations with
only a few lines of code.

15110 Principles of Computing,

Carnegie Mellon University
50

